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Abstract Long-distance animal migrations are complex,
population-level phenomena that emerge in seasonal land-
scapes as a result of the inferplay between environmental
influences (e.g., resources, predators) and social interac-
tions among conspecifics. When landscapes change with
respect to phenology or connectivity, the dynamics of
migratory species can abruptly shift, in many cases leading
to a cessation of migration and dramatic decreases in
population size. We develop a difference equation modeling
framework to explore how the social transfer of knowledge
from informed “leader” individuals enhances the perfor-
mance of seasonally migratory versus resident populations.
The model permits a wide range of population-level
behaviors including alternative stable states, partial migra-
tion equilibria, and complex dynamics, but we focus our
efforts on investigations of migration collapse mediated by
a lack of informed leaders that can arise from changes in
landscape structure, survivorship, reproduction, and/or
social learning. Migration collapse is a hysteretic phenomi-
enon in this model and results either in extinction of the
population or purely resident behavior. The hysteretic
nature of migration failure, which hinges on cultural
transmission of knowledge, highlights a potentially critical
role for behavior and social learning in aspects of spatial
ecology and conservation biology.
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Introduction

Long-distance animal migrations are a striking manifesta-
tion of the interplay among behavior, ecology, and
evolution. Such movements occur broadly in seasonal
landscapes as complex phenomena that emerge at the
population level as a result of social interactions between
conspecifics and the interrelationships between individuals
and elements of their environment (e.g., resources, preda-
tors). When landscapes change with respect to phenology
or connectivity, the dynamics of migratory species can
abruptly shift. For example, changes in climate that affect
arrival times of migrating songbirds can lead to mis-timing
with respect to essential resources and eventual population
declines (Gordo et al. 2005; Both et al. 2006). Likewise,
habitat degradation and isolation (e.g., by fencing) are
believed to underlie the cessation of migration in many
ungulate populations, and in such cases, the loss of
migration often leads to dramatic decreases in population
sizes or to local extinction of populations (Bolger et al.
2008; Newmark 2008). Such changes in movement
dynamics may have extensive ecological consequences
because migratory populations are often far more abundant
(e.g., more than ten times) than are resident populations of
the same or similar species (Fryxell et al. 1988),

The mechanisms underlying migration have been partic-
ularly well studied in birds (e.g., Alerstam 2006; Alerstam
et al. 2003; Akesson and Hedenstrom 2007) and remain the
subject of much current research. Evidence suggests that
individuals of certain taxa may migrate alone, unaided by
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conspecifics and relying mostly on endogenous, genetically
inherited programs (Berthold 2001; Wiltschko et al. 1998,
Fransson et al. 2001). However, it is also clear that for
many taxa, especially those that are long-lived and travel in
groups, innate programs alone are not sufficient to
successfully navigate migration routes (Alerstam et al.
2003). For example, in migratory southern right whales
(Eubalaena australis), calves learn summer feeding loca-
tions from their mothers, and molecular studies suggest that
culturally inherited site fidelity to feeding grounds extends
over several generations (Valenzuela et al, 2009). Likewise,
fawns learn migratory behavior from their mothers in
northern populations of white-tailed deer (Odocoileus
virginianus) where seasonal snow cover prohibits year-
round residency (Nelson 1998). Theoretical studies indicate
that animals navigate more successfully in groups and that
leadership by a small number of individuals may be a key
mechanism in animal navigation (Couzin et al. 2005; Guttal
and Couzin 2010). Empirical studies also highlight the
importance of group size for movement success. For
example, experimental studies with homing pigeons found
that a flock of six birds released together flew faster and
straighter to their home site than did the same birds flying
individually (Dell’ Ariccia et al. 2008).

In systems where social factors make important contri-
butions to movement, information transfer from more
experienced individuals to inexperienced ones (e.g., juve-
niles) constitutes a key component of navigational success.

For example, adult birds have often strikingly better

navigational capabilities compared to juvenile ones, such
as in white-crowned sparrows (Zonotrichia leucophrys
gambelii)y where adult birds, but not juveniles, rapidly
recognize and correct for a continent-wide displacement,
thereby demonstrating the importance of their learned
navigational map (Thorup et al. 2007). Several studies
demonstrate that adult birds need to be present for
successful migration of juveniles. For example, Chemnetsov
et al. (2004) demonstrated for white storks (Ciconia
ciconia) that juvenile birds, which were detained and
released only after adults birds had migrated to wintering
grounds, were unable to correctly navigate without the
company of older birds and failed to find their winter
ranges. Evidence from other bird species suggests that
entire migration routes may be culturally transmitted and
can be forgotten and become “extinct” in the absence of
experienced (i.e., informed) individuals that can train
others. In the case of whooping cranes (Grus americana)
and Canada geese (Branta canadensis), migratory move-
ments have been successfully learned using ultralight
aircraft as surrogate leaders (e.g., Ellis et al. 2003).
Likewise, in honey buzzards (Pernis apivorus), birds of
different ages use different migratory routes, with adults
apparently learning an efficient detour from other adults
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while first year migrants (juveniles) take an alternative
route involving shorter flight segments (Hake et al. 2003).

Cultural transmission of knowledge related to movement
is known from non-bird taxa as well. For example, Dodson
(1988) provides an extensive overview of the role of social
learning for various kinds of fish movements, including diel
and seasonal migrations. Particular case studies include
transplant experiments with French grunts (coral reef fish;
Haemulon flavolineatum), which demonstrated that fish can
learn diel migratory routes across reef flats from experi-
enced conspecifics (Helfman and Schulz 1984), and studies
demonstrating that zebrafish (Danio rerio) learmn escape
routes from conspecifics (Lindeyer and Reader 2010).
Consequently, there exists an empirical basis for expecting
a connection between social learning and animal move-
ments for diverse taxa on a variety of spatial scales.

However, the consequences of cultural transmission of
migratory knowledge versus endogenous migration repre-
sents a key open topic in behavioral ecology (van
Noordwijk et al. 2006), and explicit linkages among
leadership, social learning, and population dynamics are
only just beginning to be explored (Guttal and Couzin
2010). Here, we develop a theoretical model based on a
system of difference equations to examine how individual
leadership and the transmission of knowledge among
individuals influence persistence in migratory populations.
This work brings together ideas from models exploring the
effects of resource use and habitat change on the dynamics
of migratory populations (e.g., Sutherland 1996; Norris and
Taylor 2006; Taylor and Norris 2007) and from individual-
based models that have explored the relationship between
leadership and knowledge dissemination in moving animal
groups (e.g., Couzin et al. 2005; Codling et al. 2007;
Sumpter et al. 2008; Guttal and Couzin 2010).

Conceptual framework

Because we are interested in populations featuring
seasonal migration, we adopt a discrete time (difference
equation) modeling framework that allows us to contrast
the performance of migratory versus resident individuals
(see also Taylor and Norris 2007). Migrants move
cyclically between two patches within a year, whereas
residents spend the entire year within a single patch. We
have three state variables, using /, for “informed” migrants
that are familiar with the migration toute and act as
leaders, U, for uninformed migrants, and R, for resident
individuals that do not migrate. The total set of migrants is
I, + U, Informed migratory individuals obtain the
knowledge necessary to complete a successful migration
by experience or by social learning from previously
informed individuals.
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Not all individuals need to learn the route, however,
because a migrant may successfully navigate the migratory
route if it follows what the informed individuals are doing.
Benefits of informed leadership manifest through improved
survivorship of uninformed migrants provided a sufficient
number of leaders exist.

The model we develop using these state variables allows
for a wide range of population-level behaviors including
alternative stable states, coexisting stable states, and
complex dynamics. Because the richness of the model’s
behavior precludes a concise analysis, we have opted to
subdivide our investigation of the model. We focus here on
a particular range of model behaviors involving a purely
migratory steady state (7,U,0), a purely resident steady state
(0,0,R), a mixed migratory-resident steady state (/,U,R), and
population extinction (0,0,0). This focus allows for an
investigation of migration collapse due to a lack of
informed leaders together with an examination of migration
collapse mediated by changes in landscape structure,
survivorship, and/or reproduction. In future work, we plan
to pursue the issue of how migration could evolve from a
non-migratory state, which, in the present model, would
require that migration be able to start when there are
initially no informed individuals (see below). However, we
emphasize that the evolution of migration may occur on
very different timescales than the collapse of migratory
populations, so it may not prove useful to treat both
phenomena in a single model.

We configure our model to start at the end of the more
benign of two main seasons of our model animals’ annual
cycle so that the migratory animals are just getting ready to
depart for wintering or dry season foraging grounds with
densities [, and U,, whereas resident animals remain in their
year-long habitat at density R, Mortality is calculated as
occurring during the harsh season, but the mortality we are
concerned with includes, for migratory individuals, losses
on journeys to and from breeding grounds as well as
mortality during the non-reproductive stage. If we use ss
for survivorship of migratory individuals and sz for
survivorship of resident individuals, we have

[l, == SM][
U, = sulU (1)
R, = sgR;,

where the prime symbols (', and subsequently double primes, ")
denote partial steps through an annual cycle. In another context,
we will replace s, with s; # sy, but initially, we assume that
informed and uniformed migrants suffer the same losses to
mortality. In future work that considers how migration might
originally evolve, we could replace s;, in the equation for J,
with sy and in the equation for U, with sy, where sy # sy Here,
however, we will mainly assume that informed and uniformed

migrants suffer the same losses to mortality. It is reasonable to
think that the presence of larger numbers of informed
individuals would increase the survival rate during migration.
We can incorporate that effect into our model by replacing s,
with a term where survivorship may depend on /, such as
Sm <h +(1—h) 1—1{57), where 0 < 7 < 1 and 4 represents the
fraction of migrants whose mortality is not influenced by the
density of informed leaders. To facilitate analysis, we will
generally assume that 1 = 1 so that the survival rate of
migrants is independent of the number of informed individ-
uals. However, we will also conduct numerical investigations
of the case /1 < 1 to verify that our conclusions are robust
relative to our assumptions about the density dependence of
survivorship en route.

As discussed in the “Introduction,” we study a scenario in
which knowledge of “how to migrate” is socially learned
rather than genetically inherited (Dodson 1988; Ellis et al.
2003; Chemetsov et al. 2004; Thorup et al. 2007; Hake et al.
2003). Given this perspective, we need to account for (i.e.,
update) learning among survivors of the migratory process.
If the parameter / represents the probability per year of an
uninformed individual “learning” how to migrate from
informed conspecifics and if the parameter f represents the
probability per year of an informed individual “forgetting”
how to migrate, we have

L= =L+ 1)U, = (1 = fsaeds + 1{)sas U,
U =f1+ (1= IL)U, =f s+ (1= (L))su U,
R/ =R =sR,
2)

To avoid spontaneous learning, / must depend on the
density of 7 (with /(0) = 0). Similar notions underpin the
emerging idea of quorum decision making in animal
behavior (Ward et al. 2008). Allowing / to depend on /
means that learning may occur through social mechanisms,
and the strength of the dependence of 7 on [ describes the
relative importance of social interactions and experience in
the way uniformed individuals become informed. In
contrast, setting / = constant means that uninformed
individuals may learn, but only through experience.
Without major changes to the system’s dynamics, we can
set = 0 to study cases where migratory knowledge, once
learned, cannot be forgotten by an individual.

Following the arrival of migrating individuals to the
breeding grounds (where they rejoin the year-long
resident portion of the population), reproduction occurs.
To model reproduction, we use a generalized Beverton—
Holt formulation that allows migrating and resident
individuals to differ in both their respective reproductive
rates (denoted by pur and pgr) and their respective
sensitivities to crowding/resource competition (denoted
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by bar and by), yielding,

Pu (1," + U,"> +pgR
1+ brR! + by (1 + U) '

Neww =1 +U +R + (3)

Following reproduction, the next step in the life cycle is
(for those individuals that migrate) migration back to the
harsh season habitat. However, in this model, the distinc-
tion between resident and migratory individuals is neither
innate nor genetically determined. Instead, we model the
distinction as a consequence of social behavior, with
individuals making a decision to migrate based, at least in
part, on the presence of informed leaders, such as in many
long-lived species (e.g., cranes, stork, or geese; Sutherland
1998; van Noordwijk et al. 2006; Pulido 2007). To capture
this phenomenon, we introduce the function g(f), which can
be thought of as the “persuasiveness” of the informed
leaders, yielding,

Ly =1
U =g () (Nr,+1 ~1) , (4)
Ry = [1 _g(I: )] (NH-l - l; )

Because of its importance to the dynamics of the overall
system, we want to keep g(/), which is constrained such
that 0 < g(/) £ 1, as general as possible for the purposes of
analyzing the equations. Nevertheless, we can point out
some options for g(/) here that will be important for
scenarios considered later in the paper. For example, if we
set g(0) = 0, we have a situation where, without any
informed individuals, migration ceases. In contrast, if we
set g(0) > 0, we allow recruitment (in a joint behavioral-
reproductive sense) from R into U, a scenario which will be
explored in another paper. In general, we will treat g(J) as
an increasing but saturating function of I. This captures the
importance of “concentration of knowledge” for compelling
transitions-from resident to migratory groups or vice versa.
Note that in using Eq. 4, we do not discriminate between
adults and recently born individuals with respect to the
opportunity to migrate or remain resident. An alternative
form would have young of the year (e.g., calves) follow
their mothers.

Analyses of the model

Standard linearization techniques together with some
involved algebra can be used to assess the existence and
stability of equilibria for the model represented in Egs. 1-4
(see Appendix). In all of the cases we consider, we assume
f=0 and g(0) = 0, and for some calculations in the
Appendix, we assume the forms of parameter dependence
shown in this section. For most of the analysis and

;@_ Springer

discussion, we will assume that the survival rate of
migrants is a constant, s, but in some cases, we will also
examine what happens when survival depends on /,.

Existence and characterization of equilibria

The model always admits the extinction equilibrium (0,0,0).
If sp+srpg <1, this extinction equilibrium is stable.
However, at sg +sgpgp =1, a transcritical bifurcation
occurs in which the stability of the extinction equilibrium
is lost and the all-resident state, (0,0,R)), where
RI = %, emerges as a stable equilibrium. In biolog-
ical terms, survival and reproduction must be sufficiently
strong to maintain a stable all-resident population. Note that
R; is used to distinguish this equilibrium from a coexisting
equilibrium (discussed below) and that, from above, having
(0, O,RT) as a possible equilibrium requires g(0)=0.
Mathematical analyses demonstrating these points appear
in the Appendix.

Existence of additional stable fixed points can be
explored numerically. For convenience at this point, we
aggregate all the substage dynamics into a single system of
equations and eliminate the notation involving primes,
yielding:

Iy = (1 =)l + 1{1)sme Uy

U = g([r+1)Kt+1 ) (5)
Ry = (1 - g(11+1))Kr+1
where

Kivr = fsuly + (1 = I(L))spa Uy + srR,

PrSm (Ir + Ut) ‘f‘PRSRRt
1+ busu (I + U,) + brspR,

(6)

In what follows, we will take f=0. Furthermore, to
explore parameter space numerically, we assume explicit
but parameter-sparse forms for the learning and persuasive-
ness functions. For learning, we use

I
(D) = 2

T 14041 @

which means that the probability that an uninformed
individual opts not to migrate will decline as the density
of informed migrants increases. The reason for this is that
Eq. 7 implies that a larger / means a larger fraction of U, go
into 7, + | and hence migrate; the remaining fraction of U, is
more likely to move into U, ;| as [ increases because of our
assumption that g(.) increases with /. This setup accords
well with empirical results regarding the importance of
density (alternatively, group size) for effective transfer of
information related to group movement (Conradt and Roper
2005; Ward et al. 2008).
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For persuasiveness, we consider two alternative cases.
Though seeming similar at first glance, these two cases lead
to fundamentally different results concerning the nature of
the equilibria that include migratory forms. Specifically,
one case leads to a “partial migration” scenario in which
migrants and residents coexist, whereas the other case leads
to a purely migratory scenario. In case 1, we set

1,
G1de4) (8)

1,
glli1) = T+ gy’

so that persuasiveness merely asymptotes toward (but never
actually reaches) g = 1 as the number of informed
individuals increases. In case 2, we set a threshold density
I, above which leaders are perfectly persuasive, yielding

L /1
g(]l-H) — {1I+1/ c

For both cases 1 and 2, a stable equilibrium featuring
migratory individuals (I, Uy, R;) can coexist with a stable
residents-only equilibrium (0,0,R]) over a wide range of
parameter space. In case 1, where g(/) never reaches 1
(Eq. 8), a stable I,, U,, R, equilibrium with I,, U, and R,
all positive may exist, where

1r+l < Ic
. 9
Iy 21 ®)

U, = giLR,

I =——L)——"€ ’
2 I[(SM(g;RZ-l-] ~l)

and R; is a positive real root of a quartic polynomial. Thus,
case 1 corresponds to a partial migration in which both
resident and migratory individuals exist within a single
population (Lundberg 1988; Taylor and Norris 2007). Note
that having a positive value for I; requires that
Su (glR; — 1)1, which will be true if s is sufficiently
close to 1.

To examine the effects of density-dependent survival of
migrants, we can replace sy with sy (/z +(1-h) l—#) For
large I,, this expression approaches sy, and dynamics’in the
modified model are well approximated by the original
model. For small /,, this expression approaches / s3s < 83
With density-dependent survival of migrants, the (0,0, R‘;)
equilibrium remains unchanged. However, the (I;, Uy, R;)
equilibrium becomes

(10)

U, =15k,

o an (1= /n“ (‘M(l+glk.).—|) )
1=sar-+N (T-hsy (1-g1 R,y i ;
12" _ Sag -+ l( ISA,I( 4] -))< +\/ (; W+I,( ~h=M(I-5|R )))

2y (sw (g Ry+1) 1)

(11)

and R2 is a positive real root of a sixth order polynomial.
There is also a potential (13, U3,R3) equilibrium, but
numerical work suggests that the 13 root is always negative.

To examine the population-level consequences of mi-
gratory collapse, we are interested in the quantity

U, +1,

&= R‘;

, (12)

which reports the ratio of the migratory portion of the pre-
collapse population to the wholly resident post-collapse
population.

Alternatively, for case 2 where g() = 1 for large /
(Eq. 9), the stable (I, U,,R;) equilibrium is the purely
migratory case (1;, U;, 0), and stable migratory equilibria,
if they exist, are given by

1—sur
U” bM i (1 b_\f‘m) I (13)
[ _ su(ltpp)—=1  1-sy ’
2 bM(l-—S\{) N
where
. . ~1
Us+ 1 = su(l+py) =1 (14)

bMSM(l --SM) ’

The ratio of the density of the purely migratory
equilibrium to that of the purely resident one is

£ = su(l+py) =1 brsp(l —sg) (15)
SR(l +pR) -1 bMSM(l -—SM)

The scenario in Egs. 13-15 presents an analytically
tractable case in which the population-level consequences
of migration collapse can be studied to gain insight into the
more general case in Egs. 10 and 12.

Bifurcation dynamics and the collapse of migratory
populations

A stable (I, Uy, R;) equilibrium with 13, U; > 0 may lose
stability if parameters relevant to the migratory subpopula-
tion dynamics pass a critical threshold. In this manner, our
model predicts the potential for a catastrophic collapse of a
population that is wholly or partially migratory. Following
the collapse of migration, a population will converge on
one of two possible stable fixed points: extinction, (0,0,0),
or purely resident behavior, (0,0,RI) (see Appendix for
mathematical details).

For case 1, where g(J) asymptotes as the density of
informed leaders increases (Eq. 8), consider the scenario
pre=0.75, pr= 1.0, bpr=br=1.0x107, g; = 1.0, 5, = 0.9,
and sp = 0.65. Because pyr < pg and s3> sg, the migratory
subpopulation has a disadvantage in reproduction but an
advantage in survivorship. The remaining parameter, /;,
which we allow to vary, appears in Eq. 7. At higher values
of [, the probability of learning increases more rapidly with
the number of informed individuals. In Fig. 1, for each
equilibrium, we plot, separately, the dependence of 1; , U; ,

@ Springer
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Fig. 1 Equilibrial abundances of the informed (J), uniformed (U), and
resident (R) forms of the model species for case 1 (persuasiveness
saturates with density of informed migrants) with pp=0.75, pr=1.0,
ba=bpr=1.0%1073, £1=1.0, 54=0.90, and 5;=0.65. For each equilib-
rium, the dependence of the J* (a), U* (b), and R* (c) population
components are plotted separately as functions of /;. Note that R; >0
for small values of /;, meaning that in this case, the model allows for a
transition between pure resident and partial migration scenarios

and R; on ;. If I; falls below a critical threshold, the
nontrivial stable equilibriuvm, where migratory and resident
subpopulations coexist, will lose stability, and demographic
fluctuations will precipitate a collapse of migration. The
source of this threshold behavior is a saddle-node bifurca-
tion, as shown in Fig. 1d where the equilibria are plotted in
the ([; , U; ,R;) phase space with [, as an implicit
parameter.

Likewise, in case 2, if we use Eq. 9, where a threshold
density of informed leaders exists, the bifurcation can occur
when a sufficiently large change in one of several parameters
(Sa,047, bas o 1)) pushes I, < L. That a bifurcation event
can be triggered by multiple parameters means that changes
in local demography, landscape changes en route, or factors
affecting social learning may all trigger the cessation of
migration. Specifically, the bifurcation and corresponding
migratory collapse can occur given a sufficient decrease in

@ Springer

(where 1; , U; and R; are all positive; see inset in ¢). Note further
that R, depends on many parameters and can assume much larger
values than in this scenario, In d, the equilibria are plotted with /; as
an implicit parameter. The { 0,0, RIS stable fixed point is independent
of [, and a pears as a single, isdlated black dot. In contrast, the
coexisting g}z, U, U; ) equilibrium depends on /; and sweeps out a
curve as /; i varied, Dofs corresponding to stable (black) and unstable
(gray) fixed points are shown

reproductive output (pyy), an increased sensitivity to crowd-
ing (byy), an increase in the hostility of the landscape over
which migration must occur (decreasing s;4), or an evolu-
tionary or behavioral reduction in the ability of uninformed
individuals to learn how to migrate given experience (). In
each situation, the destabilization of the (1, U,0) equilib-
rium and subsequent collapse of the migratory population to
a purely resident population is ultimately tied to the absence
of a critical density of informed leaders necessary to
persuade all of the uninformed individuals to migrate
(Fig. 2).

Within each of cases 1 and 2, the qualitative dynamics of
the model are robust to changes in the parameters pa, pg,
bur, br, 215 Sas, Sp, and 17 provided that these changes do not
violate the criteria for existence of equilibria (defined
above). For example, bifurcation plots for cases where
migrants have lower survival but higher reproduction than
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Fig. 2 Equilibrial abundances of the informed (J), uniformed (U), and
resident (R) forms of the model species for case 2 (persuasiveness of
informed migrants is complete above a threshold density /) with py=
0.75, pr=1.0, by=bg=1.0%10"3, [;=1,000, 5,,=0.80, and 5;,=0.65.
For each equilibrium, the dependence of the I* (a), U* (b), and R* ()
population components are plotted separately as functions of /;. Note
that R, = 0 for all values of /;, meaning that this model allows for a

residents are comparable to those appearing in Figs. 1 and 2
where the trade-off is reversed (results not shown).

Allowing the survival of migrants to depend upon the
density of informed individuals does not qualitatively alter
the model’s dynamics. In Fig. 3, we plot bifurcations from
Eq. 11 using the same parameters as in Fig. 1, with the
addition that 4 = 0.25. All plotted values of l: are fairly
large, so the (1,, UZ,R.,) branch matches the results in
Fig. 1, as expected. Along the unstable branch, 17 is small,
and in this case, U, and R, differ quantitatively from our
original results. Overall, predictions about system dynamics
are robust relative to the dependence of sy, on [, and are
also robust relative to the values of parameters.

Because migratory species are often staggeringly abun-
dant in the real world (e.g., Fryxell et al. 1988), it is of great
interest to explore the factors controlling the relative

U*

1500

1000

500

‘%«w

T AT

transition between pure resident and pure migration scenarios, with no
possibility of partial migration. In d, gl three equilibria are plotted
with /; as an implicit parameter. The (0 0, R, stable fixed point is
independent of /; and g pears as.a single, isolated black dot. In
contrast, the coexisting (1, U,,R, ) equilibrium depends on /; and
sweeps out a curve as / i§ varied. Dfs corresponding to stable (black)
and unstable (gray) fixed points are shown

densities of migratory and resident populations in this
model. This issue is particularly interesting in the context of
the saddle-node bifurcation in which decreases in pyr or 53/
(interpretable as progressive degradation in resource avail-
ability or decreased survivorship while migrating) are some
of the mechanisms that can lead to the elimination of
migratory individuals. In both cases 1 and 2, the density of
the migratory population 1; + U; from the stable
(I,,U,,R;) equilibrium can be either greater than or less
than the density of the resident population from the stable
(0,0,R}) population that persists after the catastrophe.
Increases in Sy, and especially increases in sy relative to
sg, lead to large values of £ in which the migratory
population is far more abundant than the resident popula-
tion that persists following the collapse of migration

(Fig. 4).
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Fig. 3 Equilibrial abundances a b
of the informed (/), uniformed
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Discussion

Previous models examining the interplay between resident
and migratory populations, such as Sutherland (1996),
Norris and Taylor (2006), and especially Taylor and Norris
(2007), have all noted the important roles that demographic
factors can play in shifting the relative abundance of
migratory and resident forms. In those models, shifts in
the relative reproductive rates and survivorship of resident
and migratory forms can shift a population from an all-
resident scenario to an all-migratory scenario by passing
through a partial migration scenario featuring both types of
individuals. A key difference in our model is that we do not
assume that migration is strictly genetically determined, but
instead focus on cultural transmission of knowledge as a
key component for successful migration.

Two key aspects of this cultural transmission of
knowledge are worth emphasizing. First, the seemingly
subtle issue of whether the persuasiveness of informed
leaders at high density is “complete” or merely “very high”
has a qualitative impact on the model’s output, controlling
whether the equation system allows pure migration or
partial migration. Second, our emphasis on cultural trans-
mission leads directly to scenarios in which migration
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failure is a hysteretic phenomenon. In our modeling
framework, a decrease in survivorship during migration
(or one of several other key parameters) will still switch the
system from a purely or partly migratory state (,, U,, ) to
a purely resident state (0,0,R:). However, the change in
state is hysteretic, and it is not possible to regain the
migratory component simply by improving survivorship en
route once the population has collapsed to an all-resident
stable state. Instead, some additional factors would also
need to change as well, such as invoking some external
management strategy that provided a fresh source of
migratory individuals for the population allowing I > 0.
Our model indicates that a reduction in survivorship
during migration beyond a critical threshold will yield a
collapse of the migratory (or part-migratory) population to a
purely resident one. Under certain conditions, the switch
from a migratory population to an all resident population
will be accompanied by a large decline in population size
(Fig. 4). This type of process has been observed repeatedly
in real-world ungulate populations where the loss of
migration leads to dramatic decreases in population sizes
(Bolger et al. 2008; Newmark 2008). Similar processes
seem to operate in some populations of migratory fish
where low per capita resource availability is often a trigger
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for migratory phenotypes in populations with partial migration
(Olsson et al. 2006). For example, following the construction
of river dams that prevent migration, residual populations of
char (Salvelinus leucomaenis) upstream from the dams switch
from a migratory life history to a resident one, a change that
appears linked to the low density conditions that occur
following the cessation of migration (Morita et al. 2000).
This manuscript should be viewed as only an initial step
in the direction where leadership, social learning, genetics,
and population dynamics will eventually be linked in a
single model (for a complementary approach using
individual-based models, see Guttal and Couzin 2010).
Nevertheless, the model we introduce here is sufficiently
general that it will permit a wide variety of subsequent
investigations into interesting aspects of migratory move-
ments. In particular, changes to the existing functional form
of g(), the introduction of structure within the informed
subpopulation, or the introduction of density dependence in
any of several places would lead to models with strikingly
different interpretations from the current formulation and,
in concert, the potential for a wider range of population
dynamics. For example, if we allow g(0) # 0, the model
generalizes to include cases where there could be sponta-
neous development of migration. Such a change would
represent natural selection favoring individuals that are able
to migrate successfully in the absence of informed leaders

e
0.80 085 0.90 0.95
Sm
and thereby become informed through experience rather
than social learning. However, such a change also disallows
(0,0, R}) as a stable equilibrium. Likewise, if we rewrote g
() so that persuasiveness depends not just on the availabil-
ity of informed leaders but also on the density of resident
individuals (i.e., g = g(/,R), where the dependence on R is
interpreted to relate to crowding relative to available
resources), we have a model wherein the interplay between
local resource conditions and future opportunities in a
distant locale could be considered. Such a model would
allow for a direct examination of model transitions from
explicit territoriality to migratory movements. Moreover,
dividing the informed subpopulation on the basis of age
(with corresponding changes to the functions g(.)) and ()
would permit an examination of how experience gained
over multiple migratory roundtrips influenced population
dynamics. This could be especially interesting in conjunc-
tion with the adoption of density dependence in survival
during migration (i.e., spr = sp(0), as in Eq. 11 and Fig. 3).
In particular, allowing s;s to depend on 7 but setting s5,40) > 0
can be interpreted as allowing for the existence of
exploratory dispersal in the absence of informed leaders
and could permit the existence of additional equilibria (e.g.,
(0,U",0) or (0,U",R")) that would be indicative of different
population-level movement strategies. Perspectives such as
these are explicitly evolutionary in nature because the
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density-dependent behaviors would likely be shaped by
natural selection in that a migration trip could be more
dangerous, time-consuming, or energetically demanding
when led by fewer informed individuals.

To explore the interplay between residency and migratory
movements from an altogether different vantage point, one
could develop a model that explicitly included population
genetics (see also Griswold et al. 2010; Blanquart and Gandon
2011). Of particular interest would be an exploration of how
interbreeding between resident and migratory forms results in
new individuals of either (or both) types as a function of
environmental conditions. Such a model, which would likely
lead to rather different population dynamics and conditions for
the maintenance of migration than that afforded by cultural
transmission of behavior, will be explored in future work,

Acknowledgments Funding was provided in part by the National
Science Foundation (grant: DEB 0743557)

Appendix

Mathematical analyses providing the conditions
for existence of alternative steady states

Basic features of the model and non-migratory equilibria

It is clear that (0,0,0) is always an equilibrium for 5 and 6.
Recall that we assume g(0) = 0 and 0) = 0, but g(/) > 0 and
i) > 0 for I > 0 in the cases we consider. In that case, the
model may have additional equilibria of the forms (0,0, R*),
{*, U*, 0), or (I*, U*, R*), depending on parameter values,
but it cannot have any other types of equilibria. For example,
if /¥ = Q, then by 4, U* = 0, so no equilibrium of the form
(0, U*, R*) is possible. Other forms of equilibria can be ruled
out by similar arguments. If the system is linearized around
(0,0,0), the eigenvalues for the linearized system are 0, 5,1 —
A, and sg + sgpg. Thus, if sz + sppr < 1, the equilibrium
{0,0,0) is stable, and if sz + sgpr > 1, it is unstable, The
eigenvector corresponding to sg + sxpx is (0,0,1), so if (0,0,0)
is unstable, the instability is with respect to R.

The set {(0,0,R) : R > 0} is invariant if g(0) = 0. If / =
U = 0, then R satisfies

SpR
Rip1 = 5pR, + ProR

l +bRSRR[ ! (16)

Yvhich has a unique nonzero equilibrium R* = %*%E)S—;;— that
is positive if and only if sz + sgpr >1. The model behaves
like a Beverton—Holt model, so that if R* > 0, then R* is
globally stable among positive solutions of relative to the set
{(0,0,R) : R > 0}. In that case, (0,0, R*) is an equilibrium
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for the full system. The equilibrium (0,0, R*) can be viewed
as arising from (0,0,0) via a transcritical bifurcation in a
manner similar to the bifurcation of a positive equilibrium
from zero in the Beverton-Holt model. Such a bifurcation
occurs when the equilibrium (0,0,0) becomes unstable,
which happens when the quantity sg + sppg increases from
sp + sppr<l to sp + sppr >1. The eigenvalues for the
linearization around (0,0, R*) can be computed to be 0,
sl =), and 1 — (1 —sg) Fﬁﬁ% , which are all <1 in
magnitude, so that the equilibrium (0,0, R*) is stable if
R* > 0. Some algebra shows that to have the third
eigenvalues <1 is equivalent to sz + sppp >1, so the (0,0,
R*) equilibrium becomes stable precisely where (0,0,0) loses
stability, which is where the transcritical bifurcation occurs
(note that if g(0) # O, then any equilibrium with I* = 0 and
R* > 0 must have U* > 0, so that no equilibrium of the form
(0,0, R*) can exist).

Migratory equilibria

To see when 5 and 6 have an equilibrium with /¥ and U*
positive, first note that N = [ + U + R satisfies

PNy

< o
Nipy <8N, + 1+ bsN,

(17)
where s = max{syn8z}, p = max{pynpr}, and b = min{by,
SpS, br spis}. 1t follows that if s + sp >1, then for large ¢,
we have N, < N+ 1, where N = %(‘{_LS; is the unique
positive equilibrium of 17 if the inequality is replaced by
equality (see Cosner 1996). If s + sp < 1, then 17 implies
that all solutions of the original model go to zero as ¢ goes
to infinity. Hence, N is uniformly bounded as long as the
parameters of the model are restricted to some finite set.
Suppose that g(I) < gol for some go when I > 0 (this is
true for all the cases we consider). Then for any positive
equilibrium, we have I* < sy (I* + U*) < s3¢(1 + goN)I*.
1t follows that if s,/ is too small, the model cannot have any
equilibria with I* positive.

If g(f) = 1 for I large, then the model may have an
equilibrium of the form (I*,U*,0). If so, then P* = I* + U¥

: % %y _PusuP? * % P _
satisfies P* = sy P +1+th“],, so that I*+ U* = P* =

%, as in 13: Note that this reclpllires s.M(l + par) > 1.
If = 0 (no forgetting) and /(/) = 1377 @s in 7, then using
U*=P* — [* in the first equation of 5 allows the explicit

calculation of /* and U* as in 12, If [, > Lul=s)l g
Spr(THpp )12

yields a positive value for I*. If g(/) is defined as in 9 and it
turns out that I. < %"(—T’—iﬁsffl—;—' - l:h—sﬂ, then the values of J*

and U* shown in 12 correspond to an actual equilibrium of
the model. The specific form of /(I) given in 7 is not essential
for the existence of an (/*,U*, 0) equilibrium, but it is natural
and facilitates calculation.
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If the model is linearized around an (*,U*,0) equilibrium,
then the eigenvalues tum out to be 0, sy {I*), and
spt — Sl + (1 = s30)? /ssapyy- Clearly, the first two of
these are less than one in magnitude. Since I(/*) < 1, the
third is positive, and since sy (1 + py,) > 1, it follows that
(1 —sp)/supy < 1, 80 s — spl(T*) + (1 = 530) [saipas
< 1 —spl(I*) < 1. Thus, in the situation treated in this
paper, any (/*,U*, 0) equilibrium must be stable.

We have seen that the model admits a global bound
on all populations when the parameters are restricted to
any finite set. Furthermore, there are no equilibria with
I* or U* positive if sy, is too small, and the nature of the
stabilities or instabilities of the linearizations at (0,0,0) and
(0,0,R*) as measured by number of eigenvalues >1 in
absolute value do not change as sy is varied. On the other
hand, there are values of the other parameters such that if
8y is large then stable (/*,U*, 0) equilibria must exist.
These observations suggest that it may be possible to
construct an argument based on fixed point indices or
degree theory that would show that if stable equilibria
appear when sy is increased then unstable equilibria must
also appear. We have not attempted to do so, but numerical
computations are consistent with such behavior. Specifi-
cally, the numerical examples appear to show saddle-node
bifurcations, which are the simplest way in which new
equilibrium solutions can arise without changing the
degree of the mapping that defines the equilibria relative
to a large set determined by the a priori bounds on
populations.
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